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We study theoretically vibrational properties of microtubules (MTs), which are long hollow
cylindrical macromolecules with a diam. of the order of 25 nm and serve as a major component
of cytoskeleton in eukariotic cells. Modeling MTs by thin elastic cylindrical shells, we derive the
eigenfrequencies and eigenmodes of confined elastic vibrations in a shell-fluid system. Numerical
calculations, based on recently obtained experimental data for Young’s modulus of MT, show that
MT-water system supports interface elastic waves with maximal frequencies in a gigahertz range.
In a long-wavelength limit, there exist three axisymmetric acoustic waves with velocities of about
200 to 600 m/s, and an infinite set of helical waves with a parabolic dispersion law.

PACS number(s): 87.15.—v

I. INTRODUCTION

The increasing demand for miniaturization and en-
hancement of the operation speed has culminated in
tremendous progress in nanostructure fabrication and the
advent of the principally new microelectronic devices.
Recently, much attention has been devoted to the prob-
lem of confined optical [1] and acoustic [2-5] vibrations in
semiconductor heterostructures. Dispersion relations for
acoustic waves and the effect of the phonon confinement
on electron transport has been analyzed in such artifi-
cially grown objects as thin metal films [2], free-standing
slabs [3] and whiskers [4], as well as buried cylindrical
wires [5]. It has been suggested that such structures with
confined lattice vibrations can provide an acoustic fiber
for future acoustoelectronic devices [5].

On the other hand, the existence of the physical limita-
tions for the miniaturization due to the atomic structure
of matter brought about a new scientific direction, molec-
ular electronics [6]. In contrast to the semiconductor
technology that relies on artificially designed structures,
molecular electronics explores the physical properties of
existing organic macromolecules and their possible appli-
cations to information processing. In particular, elastic
properties of biological membranes [7] and flagella [8] in
an aqueous environment have been studied extensively.

From the point of view of nanophysics and molecular
electronics, one of the most interesting biological objects
is a cytoskeleton filamentous network existing in every
eukariotic cell [9,10]. The various filaments have been
classified according to their diameter and include micro-
filaments (5-7 nm), intermediate filaments (8-11 nm),
and microtubules (24-28 nm). Though the cytoskele-
ton has an impact on some purely biological processes
[11] (control of gene expression, protein synthesis, and
cell cycle regulation), its main functions are based on the

1063-651X/96/53(1)/1003(8)/$06.00 53

mechanical properties such as rigidity and elasticity. The
cytoskeleton is responsible for supporting the cell shape
and serves as a global framework for the mechanical and
functional integration of the whole cell [12]. Recently, in
a series of ingenious experiments, based on the change of
filament shape due to thermal (Brownian) fluctuations,
the flexural rigidity and Young’s elastic modulus have
been measured for the intermediate filaments [15] and
microtubules [16-19].

Among three major filamentous components of the cy-
toskeleton, microtubules (MTs) have received the most
attention and are subject to intensive research [9,20-22].
MTs are hollow cylinders [13] of approximately 25 nm
outer diameter, 15 nm inner diameter, and indefinite
length (see Fig. 1). The wall of a MT cylinder is made

FIG. 1. Schematic drawing of a microtubule formed with
protofilaments of tubulin dimers (from Ref. [14]).
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up of (usually 13) linear elements termed protofilaments,
which are formed of protein subunits known as tubu-
lin dimers. Each 8-nm-long dimer consists of a and
tubulin monomers with a molecular weight of 55 kDa.
Results of electron microscopy and x-ray fiber diffraction
measurements demonstrate that tubulin dimers form a
120-A pitch left-handed three-start helix set [23]. The
thin-walled tubular shape of MT provides the maximal
rigidity of the structure for given cross-sectional area and
elastic constants of the constituent material [18].

The main directions of biophysical research on MTs
include the study of their elastic properties [16-19] and
the dynamical instability of assembling and disassem-
bling [24,25]. The possibility of kinklike excitations in
MTs has been investigated theoretically [26] and the ex-
perimental observation of MT disassembly due to a low-
intensity ultrasound has been reported [27]. Incidentally,
considerable attention in semiconductor physics has been
focused on the study of electronic and vibrational proper-
ties of recently fabricated artificial counterparts of MT—
graphene nanotubules [28].

In this paper, we study theoretically the confined
acoustic vibrations of MT in a fluid using the formal-
ism of the elasticity theory. The MT is modeled by a
thin-walled hollow elastic cylinder immersed in liquid.
This approach is similar to that used for the description
of underwater acoustic scattering by thin metallic shells
[29]. In Sec. II, we obtain the equations of motion for vi-
brations in a shell-fluid system and derive the dispersion
relations for the elastic waves that are analyzed in Sec.
III. The results of numerical calculations and discussion
are provided in Sec. IV.

II. EQUATIONS OF MOTION

We model a microtubule with an infinitely long cylin-
drical shell of radius R and wall thickness A. In cylindri-
cal coordinates (r, ¢, z), the shell is chosen to be located
in the region R — h/2 < r < R+ h/2; both the inner and
outer parts of the shell are filled with a fluid. The equa-
tion of motion for the displacement vector u of the shell
is given by the second Newton’s law, which in cylindrical
coordinates has the form [30]

Opp,p + Opz, 2 + (Ur¢,£p + Opr — ULp(p) /T = pu'r' )
Orp,r + Oz, 2 + (U‘P‘PMP +20.,) /7 = piiy (1)

Orz,r + Ozz,2 + (G&pz,ap + Urz) /"‘ = puz )

where p is a volume density of the shell. The left-hand
sides of these equations are equal to elastic forces per
unit volume and are written in terms of the stress ten-
sor o. The subscripts after the commas denote partial
derivatives over corresponding variables. Equation (1) is
subject to conditions P; = o;;n; at the inner and outer
surfaces of the shell, where P is a surface force per unit
area and n is a unit vector normal to the boundary. Since
shear forces are absent in fluids, the boundary conditions
take the form

U"‘Plr:R:Fh/2 = UTZ]r:R-T:h/z =0, (2)
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U"‘Ir:R+h/2 = Po UTT|r:R—h/2 =P, (3)

where po and p; are the pressures of fluid at the outer
and inner boundaries of the shell.

In order to obtain the equations of motion for a thin
shell (h < R), Eq. (1) is integrated over r from R — h/2
to R + h/2. Assuming that all quantities (except o)
are practically constant with respect to r, and taking
into account the boundary conditions given in Egs. (2)

and (3), we find in the lowest order in small parameter
h/R:

—0po/R+ (Po — pi)/h = pi, ,
Opp, o/ R+ 0pz,z = piiy (4)
Opz, o/ R+ 04, . =pii, .

The stress tensor o can be expressed in terms of strain

tensor € with the help of the Hooke’s law. In the assump-
tion of isotropic material of the shell, it is given as

E v
= 5y Y ety 5
14+v|l1—-2v ¥ 16”+51 (%)

Oij

where E and v are Young’s modulus and Poisson’s ratio
of the material. We substitute Eq. (5) into Eq. (4), elim-
inate the component &,, with the help of Eq. (2), and
express the remaining components of strain tensor ey,
€4z, and €,, in terms of derivatives of the displacement
vector u [30]. Then, the equations of motion in the lowest
order in A/R may be written as

U, + Up,p VUy,z Di —Po _ ’U‘,,,.
R? R phs? 52’
Ur,p + Up,pp +v_u + Vilz,pz _ Up (6)
R2 T e R T8
Vi + Villp,pz | V-Uzpp +u _ Uz
z, = .
R R2 22T g2

Here vy = (1 +£v)/2, and s = \/E/p(1 — v?) is the lon-
gitudinal “thin plate” sound speed of the shell.

To obtain the equation of motion of the fluid-shell sys-
tem in a closed form, the pressure terms p; , need to be
related to the shell displacement vector u. The displace-
ment vector uy of the fluid can be expressed in terms of
the scalar potential ® through the relationship

uy = grad @; (7
® satisfies the wave equation [32]
®-s3AD=0, (8)

where sy is a speed of sound in a fluid. Then, using the
relation between the scalar potential and pressure

p=—psd,

where ps is a fluid density, the equation for the radial
displacement u, of the shell [given in Eq. (6)] can be
rewritten as
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&, —d, i,
teTaRg T ©)

Up + Up,p VU

R? R

where a = pyR/ph is a dimensionless constant that char-
acterizes the shell-fluid coupling.

We seek the solution of the equations of motion [i.e.,
Egs. (6) and (9)] as a superposition of harmonic waves
with longitudinal wave vector k, and azimuthal number

Up —ic,
u, | = Co exp (imyp + tk,z — iwt) , (10)
Uy C

and choose the solutions of Eq. (8) for scalar potentials of
fluid corresponding to the evanescent interface vibrations
localized in the vicinity of the shell:

[gz ] _ [;:Iéz((’g;//ll?) ] exp (imep + ik, z — iwt) .
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Here the inverse confinement length x (normalized by the
radius R) is given by
2
k2 . (i) QZ ,
Sf

where @ = wR/s and k = k,R are the dimensionless
frequency and wave vector, respectively. Interface vibra-
tions of fluid, localized near the shell surface, correspond
to region k% > 0; in the opposite case of w > ssk, the
acoustic energy is radiated from the shell. The require-
ment of the continuity of the fluid and shell displacements
at r = R leads, after use of Eq. (7), to the following re-
lation between c; , and c,:

G| . 1/kI],(K)
[co ] = —iceR [ 1/kK] (k) | ~

Finally, substituting Egs. (10)—(13) into (6) and (9),
we obtain the eigenequation for the interface acoustic vi-
bration in the a shell-fluid system:

k2 = Rz(kﬁ - wz/s?‘) =

(12)

(13)

D [er, Cp, cz]T =0, (14)

(11) where the dynamical matrix D is given by
J
Q21+ Wp) — 1 vk
D= m Q% —m? —v_k? —vymk , (15)
vk —vimk Q2 —v_m? — k?

and the coupling term between the shell and fluid is equal

to
I.(x) Kn(k) ] ‘ (16)

I,.(k)

Wmnzg[

P “Ki (%)

III. ANALYSIS OF DISPERSION RELATION

From Eq. (14) we find the dispersion relation for con-
fined waves in a shell-fluid system in a form

detD =0. 17)

As follows from Eqgs. (15) and (16), D is a real symmetric
3 x 3 matrix depending on azimuthal number m. There-
fore, for each given m the dispersion relation [Eq. (17)]
specifies three positive vibrational modes stl), which are
identified by j =I, II, and III in decreasing order:

QL (k) > Ql (k) > (k) . (18)

The only exclusion from inequality in Eq. (18) occurs for
m = 0, where the pure torsional mode,

Qi (k) = v—k, (19)
is decoupled from other modes over the entire range of

k, and can cross the mode with j =III; a graphical illus-
tration is given in the next section.

A. Free cylindrical shell

Let us first analyze the vibration of a free cylindrical
shell [31] by taking the coupling constant o equal to zero.
In this case, the dispersion relation defined by Egs. (15)—
(17) is reduced to a bicubic equation with respect to the
dimensionless frequency © = wR/s. It is more conve-
nient, however, to calculate the inverse relation k;., ()
as a solution of bi-quadratic equation in wave vector k.
Since the explicit form of the dispersion relation can be
readily obtained from Egs. (15) and (17), we present only

the asymptotic values of Q%)(k) For a large wavelength
(k=k,R < 1), we have

QL (k) ~ vVm? + 1, QL(k)~ o_(m+k),

(20)

— 2 k2
QUL (k) > V1= 2k, QUL (k) ~ 4/ 12K

mZ+1lm

In the axisymmetric case (m = 0) and a long-wavelength
limit, the modes I, II, and III correspond to pure ra-
dial, torsional, and longitudinal motion; for m # 0 the
radial and torsional motions are coupled. In the short-
wavelength limit (k > m + 1), we obtain asymptotic ex-
pressions that are not dependent on the azimuthal num-
ber m:
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QL.(k) ~k, QF(k)~ v"k, Qk)~+/1-02 (21)

Analysis of coefficients ¢,, c,, and ¢, in Eq. (14) shows
that in the limit of large k the modes QL (k), QI (k),
and QI!(k) correspond to pure longitudinal, torsional,
and radial vibrations. Note that for any m the minimal
value of QI is greater then the maximal value of QML
Therefore, for given frequency €2 there exist no more than

two positive wave vectors k(n‘z), which is consistent with
the availability of the biquadratic dispersion relation with
respect to k.

B. Fluid-shell system

Let us return now to the analysis of Eq. (17) for vibra-
tions in a coupled shell-fluid system (a # 0). Existence
of a fluid in the outer part of the shell can lead to a qual-
itative change in the dispersion relation. Now the (w, k)
plane is divided to two sectors by the line w = s¢k,. The
region w < sk, (or k? > 0) corresponds to the interface
vibrations, localized at distance R/x from the shell ac-
cording to Eq. (11). The opposite case of w > szk, (or
k2 < 0) can be described by Eq. (11), after the substitu-
tion of [33]

I (=tls]) = i7" Jm(|5]),
. _ T emt1 17 (1)
Km(—lllil) - 51 Hm (|K/|) )

as the radiation of an acoustic wave to the outer space
since the Hankel function of the first kind, H,(nl), corre-
sponds to an outgoing cylindrical wave. In this situation,
the eigenfrequencies (k) will be complex with negative
imaginary parts and, according to Egs. (10) and (11),
the amplitudes of vibrations will decay exponentially in
time due to an energy loss by the system. From the dis-
cussion above, it follows that the behavior of acoustic
modes depends drastically on the relation between the
sound speeds in a fluid and the shell, sy and s. Since
sound speed in water is approximately 2.5 times larger
than that in the MT (as discussed in the next section),
s¢ > s is assumed throughout the rest of this paper.

To describe the spectrum of vibrations in the shell-
fluid system, we derive the asymptotical expressions for
the coupling term W,,. in two limiting cases of phase
velocities (i) close to sy (small ) and (ii) much smaller
than sy (large ). Using the expression for the Wron-
skian of the modified Bessel equation [33], I,, (k) K], (k) —
K., (k)I],(k) = 1/k, and asymptotics of functions I,,, and
K., we find from Eq. (16)

2a /K2, for k < 1and m =0
Wik =~ | 2a/m, for k < 1 and m # 0 (22)
2a/k, for Kk > m + 1 and any m.

Since at large k the coupling term W, ~ 2a/k tends
to zero, we deduce that in a short-wavelength limit (k >
m + 1), the vibration spectrum of the shell-fluid system
tends to that of a free shell [Eq. (21)], and classification
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of modes I, II, III as pure longitudinal, torsional, and
radial, is unchanged. The physical explanation for this
result is that in the limit of large «, only a fluid in the
nearest vicinity, within R/x from the shell, participates
in vibration; therefore, the motion of the shell is essen-
tially free.

In the long-wavelength limit, there exist two distinct
cases: m = 0 and m # 0. For azisymmetric vibrations
(m=0), the mode II with dispersion given by Eq. (19)
corresponds to a pure torsional vibrations of the shell
only, and is decoupled from the rest of the modes in the
whole range of k. The frequencies of axisymmetric modes
I and III should be found from the remaining 2 x 2 de-
terminant involving the coupling term Wp,. Since this
term diverges at small x [Eq. (22)], the frequencies Qf (k)
and Qf'(k) at small k should approach zero maintain-
ing phase velocities less than sy to avoid crossing the
w = sfk, line. Analysis shows that in the limiting case
of small k the frequencies QF (k) and Qi!(k) are propor-
tional to the wave vector:

Q™M (k) ~ \fer sk . (23)

Substituting the expansion given in Eq. (23) into the dis-
persion equation, and collecting the terms of the lowest
(second) order in k, the coefficients c; 3 are found as so-
lutions of the following quadratic equation:

(s + 2013?;)02 —[s*(1 = v?) + sf,(l + 2a)]c

+s3(1-v%) =0. (24)

It can be shown that Eq. (24) always has two real positive
roots, provided that s; > s. In case of 2a > (s/sf)? and
v? < 1 the solutions of Eq. (24) are given by ¢; ~
and ¢z = 1/2a. For a coupled system (in contrast to a
free shell), both modes I and III are of the mixed radial-
longitudinal type even at m = 0 and small k. Note also
that in the absence of fluid the frequency of the mode I
would have a finite value at £k = 0: in the case of &« = 0
we have Q}(0) = 1 in accordance with Eq. (20).

In the case of vibrations without rotational symmetry
(m # 0), the coupling term W,,, reaches a finite value
Wio = 2a/m at k = 0 [see Eq. (22)], and modes I and
IT touch the line w = s¢k, at finite frequencies, while the
localization length R/k will tend to infinity. However,
in the case of Re (w) > s¢k, the frequency w will have
a negative imaginary part, and the amplitudes of vibra-
tions will decay as a result of the radiation of acoustic
energy out of the shell. The frequency of the mode IIT
will preserve its parabolic dependence on the wave vector
in the limit of small k£ [Eq. (20)], though with a renor-
malized coefficient:

/ 1—v2 k?
QUL (k) | ——— =, 25
mo(k) m2 +2am+1m (25)

Thus, in the long-wavelength limit (k, < 1/R), the
shell-fluid system supports three axisymmetric interface

modes with a linear dispersion law, Q((Jj)(k) o« k, corre-
sponding to conventional acoustic waves with linear dis-
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persion. In addition, there exists an infinite set of inter-
face modes with a parabolic dispersion law, QI!(k) oc k2
and m = 1,2,..., as given by Eq. (25). Since the lines of
constant phases for such waves,

mp + k,z — wt = const

have the form of helices according to Egs. (10) and (11),
this set of modes can be termed as helical waves. In
contrast to acoustic waves with constant phase and group
velocities, those for helical waves tend to zero at small
wave vectors k.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to find the vibrational spectrum of the shell-
fluid system in the whole range of k, we have to solve
the transcendental dispersion relation given by Egs. (15)—
(17) numerically. Among the parameters required for the
numerical evaluation, the most difficult to obtain are the
elastic constants, F and v, for MT, since no direct mea-
surement seems to be possible. However, the results de-
pend only weakly on the Poisson’s ratio v, and reliable
values for the Young’s modulus E has been measured
[16-19] using the elegant method based on thermal fluc-
tuations of shape of MT.

The main physical idea for the measurement of a flex-
ible rigidity (FR) of long macromolecules is that they
are subject to the Brownian motion due to interaction
with the surrounding molecules of water [34,35]. Since
the macromolecules are relatively heavy, the fluctuation
of their center of mass is negligible, but their shape can
be changed notably, depending directly on the FR for
the molecule. The latter is equal to E1, i.e., the product
of Young’s modulus E and the geometrical moment of
inertia I of a molecule’s cross section.

The first determination of the MT rigidity, per-
formed by Yamazaki, Maeda, and Miki-Noumura [16] and
Mizushima-Sugano, a Maeda, and Miki-Noumura [17],
were based on measurement of the thermal fluctuations
of the end-to-end distance of MT; knowledge of these
fluctuations and the total length of MT allows the deter-
mination of the FR [35]. However, such measurements
lack a test of internal consistency, which is desirable be-
cause of the difficulty in distinguishing fluctuations from
measurement noise and nonthermal bending [18]. It is
believed now that the values obtained in Refs. [16,17]
are almost 2 orders of magnitude smaller than the actual
ones because of measurement errors and intrinsic bend of
MT [18].

The first reliable data on the rigidity of MT have been
obtained by Gittes et al. [18] using dark-field and fluo-
rescence video-enhanced microscopy to monitor the ther-
mal fluctuations in shape of taxol-stabilized MT free in
solution. In order to overcome the problems due to the
measurement noise, the FR was deduced from the Fourier
decomposition of the MT shape. Results of analysis of up
to the three lowest Fourier modes of the shape of MT of
different length were consistent with each other and gave
the value of FR corresponding to the isotropic Young’s
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modulus E ~ 1.2 GPa. Gittes et al. [18] have also mea-
sured the FR of actin filaments and obtained the value
of the Young’s modulus £ = 2.6 GPa in good agreement
with the earlier results [15]. More recently, Venier et al.
[19] applied two independent methods to measure the FR
of MT attached by one end to axonemal pieces fixed on
the glass. In this study, the FR was obtained by ana-
lyzing the bending shape of MT in a hydrodynamic flow
and the thermal fluctuations of the free end of MT. Both
methods gave similar results for FR corresponding to an
isotropic Young’s modulus E = 0.5 + 0.1 GPa. The fac-
tor of 2 discrepancy with the results of Gittes et al. were
interpreted as due to the stiffening action of taxol used
in Ref. [18] to stabilize the MT.

In our numerical calculations, the most recent value
of Young’s modulus, £ = 0.5 + 0.1 GPa from Ref. [19],
is used. Another parameter needed in the calculation is
Poisson’s ratio v. In general, the value for this parameter
(of known materials) lies in the range 0 < v < 1/2, with
typical values of v = 0.2-0.3. Since our results depend
only weakly on v, we choose, for the sake of definiteness,
the value v = 0.3.

Approximation of a microtubule by a hollow cylinder
with ideal surfaces used in Refs. [18,19] to calculate the
geometric moment of inertia, required the use of “con-
tact” inner radius R; of 11.5 nm (measured in Ref. [23])
and wall thickness h of 2.7 nm for 14-protofilament MT.
Thus, the outer radius R, of MT in our calculation is
14.2 nm and the mean radius R = (R; + R,)/2 is approx-
imately 12.8 nm. At the same time, by taking the mass
of a tubulin dimer to be M = 110 kDa = 1.83 x 1071? g,
and the length / = 8 nm, we find the density p =
14M/mw(R%2 — R?){ ~ 1.47 g/cm® and the “thin-plate”
sound speed s = /E/p(1 —1v?) =~ 610 m/s. Using the
density of water (p; = 1 g/cm?®) and speed of sound in
water (sy = 1.50 km/s), the value of the dimensionless
coupling constant o = psR/ph is found to be approxi-
mately 3.22.

We note that the calculated sound speed in MT is 2.5
times lower than in water, in contrast to that in mate-
rials with cellulose-based cell walls (e.g., wood), where
the propagation speed is substantially higher. The rea-
son for such a difference lies in the large Young’s mod-
ulus of cellulose, E ~ 100 GPa [36], and is because of
the nature of chemical binding in this polymer. In fact,
glucose monomers are linked to cellulose by strong 3 1,4-
glicosyde (covalent) bonds, while tubulin subunits assem-
ble into MT due to much weaker hydrophobic interaction.

The results of numerical calculations of dispersion
Qg)(k) for azimuthal numbers m =1, 2, and 3 are pre-
sented in Figs. 2-4. Thick solid lines correspond to vi-
brations of MT interacting with water both outside and
instde of MT. The eigenfrequencies of free MT are pre-
sented for comparison and are marked by thick dashed
lines. The thin line is specified by w = s¢k, and it sepa-
rates the region of interface vibrations in the MT-water
system from that of radiative waves. Note that the di-
mensionless frequency 2 = 1 corresponds to a cyclic fre-
quency of fo = 7.6 GHz.

As can be seen from Figs. 24, the frequencies of vi-



1008 YURI M. SIRENKO, MICHAEL A. STROSCIO, AND K. W. KIM 53

Frequency

0 1 2 3
Wave vector

FIG. 2. Dimensionless frequency Q@ = wR/s vs dimension-
less wave vector k = Rk, for axisymmetric (mn = 0) vibrations
of MT. 2 = 1 corresponds to a cyclic frequency 7.6 GHz. Solid
and dashed lines correspond to vibrations in a MT with and
without water, respectively. Thin dotted line at w = s¢k,
separates regions of interface and radiative waves.

brations for MT-water system tend to those of a free MT
at large wave vectors (k, > m/R) and do not depend on
the azimuthal number m. In a short-wavelength limit,
the modes I and II have a linear dispersion with veloci-
ties s =~ 610 m/s and s4/(1 — v)/2 =~ 360 m/s, while the
cyclic frequencies of the type-III modes tend to a con-

Frequency

-

Wave vector

FIG. 3. Dispersion relations for vibration of MT with az-
imuthal number m = 1. Other notations coincide with those
in Fig. 2.

Frequency

1 2
Wave vector

FIG. 4. Dispersion relations for vibration of MT with az-
imuthal number m = 2. Other notations coincide with those
in Fig. 2.

stant value of 7.2 GHz [see Eq. (20)]. In the limit of large
k, modes I, II, and III correspond to pure longitudinal,
torsional, and radial vibrations. Note that because of
our assumption of homogeneous MT walls, the results at
k Z 1 are only of qualitative character (the length of the
tubulin dimer, 8 nm, is comparable to the radius of MT,
13 nm). Moreover, since our derivation was based on the
assumption of thin MT walls (h < R), the results are
even qualitatively wrong for k > R/h ~ 5. The assump-
tions made do not modify the long-wavelength (k < 1)
part of the spectrum, which is of prime importance for
the study of conformational changes in proteins [37,38].

The behavior of the eigenfrequencies at intermediate
and small values of wave vector k depends essentially on
whether the azimuthal number m is equal to zero.

For axisymmetric vibrations (m = 0), the mode
Ql(k) = /(1 —v)/2k with the velocity 360 m/s (see
Fig. 2) involves the pure torsional vibrations of the shell
only and is decoupled from other modes [cf. Eq. (19)].
The other two modes in Fig. 2 (I and III) cannot touch
the line w = syk,, because the shell-fluid coupling term
Wy, [given by Eq. (22)] diverges when phase velocity of
a wave approaches sound speed in a fluid sy. At large
wavelength, the radial-longitudinal modes I and III de-
pend linearly on k and are characterized by speeds of
propagation 614 and 225 m/s according to Egs. (23) and
(24). The linear dependence of ), QI, and Q! on k
in the long-wavelength limit allows us to identify them
with conventional acoustic modes, in contrast to other
elastic modes that also could be called acoustical. For
vibrations without rotational symmetry, two modes (92,
and Q) for each given m # 0 cross the line w = sk,
and become radiative modes at small k. Continuation of
their dispersion curves is not shown at k, < Re (w/sy)
in Figs. 3 and 4, since in this region the eigenfrequencies
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are complex. The helical mode III remains real at all
wavelengths, and QI oc £2 in agreement with Eq. (25).

V. CONCLUSION

We have investigated the existence of interface elastic
vibrations of MT immersed in water. It is found that
this system supports nonradiative elastic waves localized
in the vicinity of the MT wall with maximal frequen-
cies of order of tens of gigahertz. In the long-wavelength
limit, there exist three axisymmetric acoustic waves with
propagation speed of approximately 200-600 m/s and an
infinite set of helical waves with a parabolic dispersion
law.

Our results draw attention to a parallel existing be-
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tween recent studies of acoustic phonon quantization in
artificially grown semiconductor nanostructures [2-5,28]
and vibrations of their biological counterparts, micro-
tubules. On other hand we hope that our analysis of
large-scale collective motions of MT based on elasticity
formalism complements molucular dynamics simulations
of vibrational spectra of globular proteins [37-39].
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